$\lambda_{\mathrm{m}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}^{0}=\mathrm{x} \;\mathrm{S}\; \mathrm{cm}^{2} \mathrm{mol}^{-1}$
$\lambda_{\mathrm{m}\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)}^{0}=\mathrm{y} \;\mathrm{S\;cm}^{2} \mathrm{mol}^{-1}$
$\lambda_{\mathrm{m}(\mathrm{CH_3} \mathrm{COOK})}^{0}=\mathrm{z}\; \mathrm{S\;cm}^{2} \mathrm{mol}^{-1}$
$\mathrm{CH}_{3} \mathrm{COOH}$ માટે $\lambda_{\mathrm{m}}^{0}\left(\mathrm{in}\; \mathrm{S} \;\mathrm{cm}^{2} \mathrm{mol}^{-1}\right)$ શું હશે ?
\(\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}\dots (2)\)
\(\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{K}^{+}+\mathrm{SO}_{4}^{-2}\dots (3)\)
\(\mathrm{CH}_{3} \mathrm{COOK} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{K}^{+}\dots (4)\)
According to Kohlrausch's law
\(\lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{H}^{+}}^{\circ}\)
eq. \((1)=\) eq. \((4)+\) eq. \(\frac{(2)}{2}-\) eq. \(\frac{(3)}{2}\)
\(\therefore \quad \lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=z+\frac{\mathrm{x}}{2}-\frac{\mathrm{y}}{2}\)
\(\lambda_{\mathrm{CH}_{3} \mathrm{COOH}}^{\circ}=\frac{(\mathrm{x}-\mathrm{y})}{2}+\mathrm{z}\left(\mathrm{S} \times \mathrm{cm}^{2} \mathrm{mol}^{-1}\right)\)