
$\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,OH} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|} \\
{C{H_3}{\text{ }} - {\text{ }}CH{\text{ }} = {\text{ }}CH{\text{ }} - {\text{ }}C{H_3}\xrightarrow{{{H_3}{O^ + }}}\,C{H_3} - C{H_2} - CH - C{H_3}}
\end{array}$


$\mathop {C{H_3} - }\limits_\delta \mathop {C{H_2} - }\limits_\gamma \mathop {CH = }\limits_\beta \mathop {C{H_2}}\limits_\alpha $
$(E)$