निश्चित समाकलन के गुणधर्मों का उपयोग करते हुए समाकलन का मान ज्ञात कीजिए $- \int_{0}^{\frac\pi 2} (2 \log \sin x - \log \sin 2x)dx$
Exercise-7.11-10
Download our app for free and get started
माना $I=\int_{0}^{\frac\pi 2} (2 \log \sin x - \log \sin 2x)dx$
$=\int_{0}^{\frac\pi 2} (\log \sin^2x - \log \sin 2x)dx\ (\because m \log n = \log n^m)$
$=\int_{0}^{\frac\pi 2} \log \left(\frac{\sin ^{2} x}{\sin 2 x}\right) d x\ (\because \log m - \log n = \log\frac{m}{n})$
$=\int_{0}^{\frac\pi 2} \log \left(\frac{\sin ^{2} x}{2 \sin x \cos x}\right) d x \ (\because \sin 2x = 2 \sin x \cos x)$
$=\int_{0}^{\frac\pi 2} \log \left(\frac{\tan x}{2}\right) d x =\int_{0}^{\frac\pi 2} \log (\tan x) - \log 2 dx$
$=\int_{0}^{\frac\pi 2} \log(\tan x)dx -\int_{0}^{\frac\pi 2} \log 2dx$
$\Rightarrow I = I_1 - (\log 2) [x]_{0}^{\frac\pi 2} = I_1 - (\frac{\pi}{2} - 0)\log 2 ...(i)$
जहाँ$, I_1 = \int_{0}^{\frac\pi 2} \log(\tan x)dx ...(ii)$
$\Rightarrow I_{1}=\int_{0}^{\frac\pi 2} \log \left[\tan \left(\frac{\pi}{2}-x\right)\right] d x\ [\because\int_{0}^{a} f(x)dx = \int_{0}^{a}f(a -x)dx]$
$\Rightarrow I_1 = \int_{0}^{\frac\pi 2} \log(\cot x)dx ...(iii)$
समी $(ii)$ और $(iii)$ को जोड़ने पर,
$2 I_{1}=\int_{0}^{\frac\pi 2} {(\log(\tan x) + \log(\cot x)}dx$
$=\int_{0}^{\frac\pi 2} \log(\tan x \cot x)dx \ (\because \log m + \log n = \log mn)$
$=\int_{0}^{\frac\pi 2} \log 1 dx = 0$
$\Rightarrow I_1 = 0\ (\because \tan x = \frac{1}{\cot x})$
$I.$ का मान समी $(i)$ में रखने पर $I = 0-\frac{\pi}{2} \log 2=-\frac{\pi}{2} \log 2$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*