Droplets of mercury \(=64\)
Density of small droplet \(=\sigma_{\text {small }}\)
Density of big droplet \(=\sigma_{\text {biz }}\)
We know that,
\(\frac{\sigma_{\text {small }}}{\sigma_{\text {big }}}=\frac{ q }{ Q } \times \frac{ R ^2}{ r ^2}\)
\(\frac{\sigma_{\text {small }}}{\sigma_{\text {big }}}=\frac{q}{(n q)} \times \frac{\left( n ^{\frac{1}{3}} r \right)}{ r ^2}\)
\(\frac{\sigma_{\text {small }}}{\sigma_{\text {big }}}= n ^{-\frac{1}{3}}\)
Now, put the value of \(n\)
\(\frac{\sigma_{\text {small }}}{\sigma_{\text {big }}}=(64)^{-\frac{1}{3}}\)
\(\frac{\sigma_{\text {small }}}{\sigma_{\text {big }}}=\frac{1}{4}\)
Hence, the ratio is \(\frac{1}{4}\)