\(\therefore {V_1}\,\, = \,\,\frac{1}{{4\pi {\varepsilon _0}}}\,\frac{{{Q_1}}}{{{R_1}}}\,\, \Rightarrow \,\,10\,\, = \,\,\frac{{9 \times {{10}^9} \times {Q_1}}}{{3 \times {{10}^{ - 2}}}}\,\, \Rightarrow \,\,{Q_1}\,\, = \,\,\frac{{10 \times 3 \times {{10}^{ - 2}}}}{{9 \times {{10}^9}}}\)
અને \({V_2}\,\, = \,\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q_2}}}{{{E_2}}}\,\, \Rightarrow \,\,10\,\, = \,\,\frac{{9 \times {{10}^9} \times {Q_2}}}{{1 \times {{10}^{ - 2}}}}\,\, \Rightarrow \,\,{Q_2}\,\, = \,\,\frac{{10 \times 1 \times {{10}^{ - 2}}}}{{9 \times {{10}^9}}}\)
કુલંબના નિયમ મુજબ,તેમની વચ્ચેનું અપાકર્ષણ બળ
\( = \,\,\frac{{9 \times {{10}^9} \times 10 \times 3 \times {{10}^{ - 2}} \times 10 \times 1 \times {{10}^{ - 2}}}}{{9 \times {{10}^9} \times 9 \times {{10}^9} \times {{(10 \times {{10}^{ - 2}})}^2}}}\,\)
(પરિણામ \(1\) અને \(2\) પરથી ) \( = \,\,\left( {\frac{1}{3}} \right) \times {10^{ - 9}}\ N\)