\(Density =( mass ) ( Volume )\)
i.e. \(\rho=( M / V )\)
\(\therefore P \times( M / \rho)= nRT\)
\(\therefore P =\{( nRT \rho) / M \}\)
\(( P / \rho T )=\text { constant }\)
Given: pressure is doubled, Temper attire is \(4\) times.
As \(\left(P_{2} / P_{1}\right)=\left\{\left(\rho_{2} T_{2}\right) /\left(\rho_{1} T_{1}\right)\right\}\)
\(\therefore\left\{2 P _{1} / P _{1}\right\}=\left(\rho_{2} / \rho_{1}\right) \cdot\left\{4 T _{1} / T _{1}\right\}\)
\(\therefore\left(\rho_{1} / \rho_{1}\right)=(1 / 2)\)
\(\therefore \rho_{2}=\left(\rho_{1} / 2\right)\)
Hence density is halved.
વિધાન $B\,\,:\,\,\,\frac{{{C_P}}}{{{C_V}}}\,\, = \,\,1.67\,\,$