\(log \,K_p = K_c + log (RT) \)
\({\text{log}}\frac{{{K_p}}}{{{K_c}}}\,\, = \,\,\log \,\,\left( {RT} \right)\,\,\) અથવા \({\text{log}}\frac{{{K_p}}}{{{K_c}}}\,\, = \,\,\log \,\,\left( {RT} \right)\,\, = \,\,0\)
$Co{O_{2\left( g \right)}} + C{O_{\left( g \right)}} \rightleftharpoons Co{O_{\left( s \right)}} + C{O_{2\left( g \right)}}\,\,;\,K = 490$
તો નીચેની પ્રક્રિયા માટે સંતુલન અચળાંક .... થશે.
$C{O_{2\left( g \right)}} + {H_{2\left( g \right)}} \rightleftharpoons C{O_{\left( g \right)}} + {H_2}{O_{\left( g \right)}}$
$II: C + D $ $\rightleftharpoons$ $ 3A ; K_{eq}= K_2, $
$III: 6B + D $ $\rightleftharpoons$ $2C; K_{eq} = K_3$ જેથી,