$6 {OH}^{-}+{Cl}^{-} \rightarrow {ClO}_{3}^{-}+3 {H}_{2} {O}+6 {e}^{-}$
પોટેશિયમ ક્લોરેટ $10.0\, {~g}$ પેદા કરવા માટે $x\, A$નો પ્રવાહ $10\, h$ માટે પસાર કરવો પડે છે. ${x}$નું મૂલ્ય $.......$ છે. (નજીકના પૂર્ણાંકમાં)
(આણ્વિય દળ $\left.{KClO}_{3}=122.6 {~g} {~mol}^{-1}, {~F}=96500 {C}\right)$
\(6 {OH}^{-}+{Cl} ^{-}\rightarrow {ClO}_{3}^{-}+3 {H}_{2} {O}+6 {e}^{-}\)
\(\rightarrow 10\, {~g}\, {KClO}_{3} \Rightarrow \frac{10}{122.6} \,{~mol} \,{KCO} 3\) in obtained
\(\rightarrow\) From the above reaction, it is concluded that by \(6\, {~F}\) charge \(1\, {~mol} \,{KClO}_{3}\) is obtained.
\(\rightarrow\) By the passage of \(6\, {~F}\) charge \(=1\, {~mol} \,{KClO}_{3}\)
\(\therefore\) By the passage of \(\frac{x \times 10 \times 60 \times 60}{96500}\, {~F}\) charge
\(=\frac{1}{6} \times \frac{x \times 10 \times 60 \times 60}{96500}\)
Now \(\frac{x \times 10 \times 60 \times 60}{6 \times 96500}=\frac{10}{122.6}\)
\(\Rightarrow x=\frac{10 \times 965}{60 \times 122.6}=\frac{965}{735.6}=1.311 \simeq 1\)
OR
\(W=\frac{E}{F} \times I \times t\)
\(10=\frac{122.6}{96500 \times 6} \times x \times 10 \times 3600\)
\(X=1.311\)
$I$. $\log \,\,K\, = \,\frac{{nF{E^o}}}{{2.303\,RT}}$
$II$. $K\, = \,{e^{\frac{{nF{E^o}}}{{RT}}}}$
$III$. $\log \,\,K\, = -\,\frac{{nF{E^o}}}{{2.303\,RT}}$
$IV$. $\log \,\,K\, = 0.4342\,\,\frac{{-nF{E^o}}}{{RT}}$
સાચું વિધાન $(s)$ પસંદ કરો
${Cu}({s})\left|{Cu}^{2+}({aq})(0.01 {M}) \| {Ag}^{+}({aq})(0.001 {M})\right| {Ag}({s})$ કોષ માટે ,કોષનો પોટેન્શિયલ $=.....\times 10^{-2} {~V}$
[ઉપયોગ : $\frac{2.303 {RT}}{{F}}=0.059$ ]