ક્રમ. |
$[A]_0$ |
$[B]_0$ |
શરૂઆતનો વેગ |
$(1)$ |
$0.012$ |
$0.035$ |
$0.10$ |
$(2)$ |
$0.024$ |
$0.070$ |
$0.80$ |
$(3)$ |
$0.024$ |
$0.035$ |
$0.10$ |
$(4)$ |
$0.012$ |
$0.070$ |
$0.80$ |
ઉપરોક્ત માહિતીને અનુરૂપ વેગ નિયમ શું છે?
$(i)\,\, X_2 \rightarrow X + X$ $($ઝડપી$)$
$(ii)\,\,X + Y_2 \rightleftharpoons XY + Y$ $($ધીમી$)$
$(iii)\,\,X+ Y \rightarrow XY$ $($ઝડપી$)$
તો કુલ પ્રક્રિયાક્રમ જણાવો.
$\mathrm{A}+\mathrm{B} \underset{\text { Step } 3}{\text { Step } 1} \mathrm{C} \xrightarrow{\text { Step } 2} \mathrm{P}$
પ્રથમના વર્તુળ પ્રક્રિયાની માહિતી નીચે સૂચવેલી છે.
સ્ટેપ |
Rate constant $\left(\sec ^{-1}\right)$ |
Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
$1$ | ${k}_1$ | $300$ |
$2$ | ${k}_2$ | $200$ |
$3$ | ${k}_3$ | $\mathrm{Ea}_3$ |
ઉપરોક્ત રીતેની પ્રક્રિયાનું વધારણીક વર્તુળ $(k)$ આપવામાં આવે છે. $\mathrm{k}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_3}$ અને ઉપરોક્ત વધારણીક તાપ $(E_2)= 400$ કેલ્વિન છે, તો $\mathrm{Ea}_3$ નું મૂલ્ય છે $\mathrm{kJ} \mathrm{mol}^{-1}$ (નજીકની પૂર્ણાંક).
(આપેલું છે$: \ln 10=2.3, R =8.3 \,J\, K ^{-1} \,mol ^{-1}, \log 2=0.30$ )
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $318 \,K$ પર ${N}_{2} {O}_{5}$ની પ્રારંભિક સાંદ્રતા $2.40 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ છે. $1$ કલાક પછી ${N}_{2} {O}_{5}$ની સાંદ્રતા $1.60 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ હતી. $318\, {~K}$ પર પ્રક્રિયાનો વેગ અચળાંક $.....\,\times 10^{-3} {~min}^{-1}.$ (નજીકના પૂર્ણાંકમાં)
[આપેલ છે: $\log 3=0.477, \log 5=0.699$ ]
(નજીકના પૂર્ણાંકમાં રાઉન્ડ ઑફ) $[$ ઉપયોગ કરો : $\left. R =8.31 \,J \,K ^{-1} \,mol ^{-1}\right]$