\(\Delta {S^o} = - 1.00\,kJ\,{K^{ - 1}}\)
From the equation
\(\Delta G = \Delta {H^o} - T\Delta {S^o} = - 29.8 - (298 \times - 0.100)\)
\( = - 29.8 + 29.8 = 0\)
Now, \(\Delta {G^o} = - 2.303\,RT\,\log \,{K_{eq}}\)
\(0 = - 2.303\,RT\,\log \,{K_{eq}}\)
\(\therefore {K_{eq}} = 1\)
$CH_4\,(g)\,\,186.2\,JK^{-1}\,mol^{-1}$
$O_2\,(g)\,\,205.2\,JK^{-1}\,mol^{-1}$
$CO_2\,(g)\,\,213.6\,JK^{-1}\,mol^{-1}$
$H_2O\,(g)\,\,69. 9\,JK^{-1}\,mol^{-1}$
નીચેની પ્રક્રિયા માટે એન્ટ્રોપી ફેરફાર $(S^o)$ ........$JK^{-1}\,mol^{-1}$
$CH_4\,(g) + 2O_2\,(g) \to CO_2\,(g) + 2H_2O(l)$
$S{O_2} + \frac{1}{2}{O_2} \to S{O_3} + y\,kcal$
$S{O_2}$ની સર્જન ઉષ્માનું મૂલ્ય શોધો
$(i)$ $H_{(aq)}^+ + OH^-= H_2O_{(l)} ,$ $\Delta H = -X_1\,kJ \,mol^{-1}$
$(ii)$ $H_{2(g)} + \frac{1}{2}O_{2(g)} = H_2O_{(l)},$ $\Delta H = -X_2\,kJ \,mol^{-1}$
$(iii)$ $CO_{2(g)} + H_{2(g)} = CO_{(g)} + H_2O_{(l)},$ $\Delta H = -X_3\, kJ\, mol^{-1}$
$(iv)$ $ C_2H_{2(g)}+ \frac{5}{2} O_{2(g)} = 2CO_{2(g)} + H_2O_{(l)},$ $\Delta H = -X_4\,kJ \,mol^{-1}$
તો $H_2O_{(l)}$ સર્જનઉષ્મા કેટલી હશે ?