So, , rder of reaction \(=1\)
\({t}_{1 / 2}=120 \mathrm{~min}\)
For \(90 \%\) completion of reactio
\(\Rightarrow \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}\right)\)
\(\Rightarrow \frac{0.693}{\mathrm{t}_{1 / 2}}=\frac{2.303}{\mathrm{t}} \log \frac{100}{10}\)
\(\therefore \mathrm{t}=399 \mathrm{~min} .\)
$[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | પ્રક્રિયાનો પ્રારંભિક વેગ $(mol\, L^{-1}\,s^{-1} )$ |
$0.05$ | $0.05$ | $0.045$ |
$0.10$ | $0.05$ | $0.090$ |
$0.20$ | $0.10$ | $0.72$ |
$\mathrm{A} \stackrel{700 \mathrm{K}}{\rightarrow}$ નીપજ
$\mathrm{A}\xrightarrow[\text { catalyst }]{500 \mathrm{K}} $ નીપજ
ઉદીપક માટે જોવા મળે છે કે ઉદ્દીપકની હાજરીમાં $\mathrm{E}_{\mathrm{a}}$ માં $30 \;\mathrm{kJ} / \mathrm{mol}$ નો ઘટાડો થાય છે. જો વેગ બદલાય નહિ તો ઉદ્દીપિત પ્રક્રિયા માટે સક્રિયકરણ ઊર્જા ગણો. (પૂર્વધાતાંક અવયવ સમાન છે તેમ ધારો)
$2N_2O_5 \rightarrow 4NO_2 + O_2$ નો દર ત્રણ રીતે લખી શકાય.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
$k$ અને $k'$ તથા $k$ અને $k''$ વચ્ચેનો સંબંધ .............