and that of \(Z\) be \(^{\prime} b^{\prime}\) the for the given reactions,
we have \(X \quad \rightleftharpoons \quad 2 Y\)
Initial \(a\, moles \quad \quad 0\)
At equi. \(\quad a(1-\alpha) \quad 2 a \alpha\)
\(a(1-\alpha) \quad 2 a \alpha\)
Total no. of moles \(=a(1-\alpha)+2 a \alpha\)
\(=a-a \alpha+2 a \alpha=a(1+\alpha)\)
Now, \(\quad K_{p_{1}}=\frac{\left(n_{y}\right)^{2}}{n_{x}} \times\left(\frac{P_{r_{1}}}{\sum n}\right)^{\Delta n}\)
or, \(\quad K_{p_{1}}=\frac{(2 a \alpha)^{2} \cdot P_{T_{1}}}{[a(1-\alpha)][a(1+\alpha)]}\)
\(Z \rightleftharpoons P+Q\)
Initial \(\quad\) \(b \,moles\) \(\quad 0 \quad 0\)
Ar equi. \(\quad b(1-\alpha) \quad b \alpha \quad b \alpha\)
Total no. of moles
\(=b(1-\alpha)+b \alpha+b \alpha\)
\(=b-b \alpha+b \alpha+b \alpha\)
\(=b(1+\alpha)\)
Now \(\quad K_{P_{2}}=\frac{n_{Q} \times n_{P}}{n_{z}} \times\left[\frac{P_{r_{2}}}{\Sigma_{n}}\right]^{\Delta n}\)
\(\quad K_{P_{2}}=\frac{(b \alpha)(b \alpha) \cdot P_{T_{2}}}{|b(1-\alpha)||b(1+\alpha)|}\)
or \(\quad \frac{K_{P_{1}}}{K_{P_{2}}}=\frac{4 \alpha^{2} \cdot P_{T_{1}}}{\left(1-\alpha^{2}\right)} \times \frac{(1-\alpha)^{2}}{P_{T_{2}} \cdot \alpha^{2}}\)
\(=\frac{4 P r_{1}}{P r_{2}}\)
\(\frac{P_{T_{1}}}{P_{F_{2}}}=\frac{1}{9} \quad[\) as
\(\left.\frac{K_{P_{1}}}{K_{P_{1}}}=\frac{1}{9} \text { given }\right]\)
\(\frac{P_{T_{1}}}{P_{T 2}}=\frac{1}{36}\)
\(1: 36\)
${N_2}(g) + {O_2}(g) \rightleftharpoons 2NO(g)$
${N_2}{O_4}(g) \rightleftharpoons 2N{O_2}(g)$
${N_2}(g) + 3{H_2}(g) \rightleftharpoons 2N{H_3}(g)$