Energy acquired by both, \(E=e V\) For Deuteron.
Kinetic energy, \(\frac{1}{2} m V^{2}=e V\)
[ \(V\) is the potential difference]
\(v = \sqrt {\frac{{2eV}}{{{m_d}}}} \)
But \(m_{d}=2 m\)
Therefore, \(v=\sqrt{\frac{2 e V}{2 m}}=\sqrt{\frac{e V}{m}}\)
Radius of path, \(R=\frac{m v}{e B}\)
Substituting value of \('V'\) we get
\(R = \frac{{2m\sqrt {\frac{{ev}}{m}} }}{{eB}}\)
\(\frac{R}{2}=\frac{m \sqrt{\frac{e v}{m}}}{e B}\) .... \((i)\)
For proton :
\(\frac{1}{2} m V^{2}=e V\)
\(v=\sqrt{\frac{2 e V}{m}}\)
Radius of path, \(R' = \frac{{mV}}{{eB}} = \frac{{m\sqrt {\frac{{2eV}}{m}} }}{{eB}}\)
\(R = \sqrt 2 \times \frac{R}{2}\) [From eq. \((i)\) ]
\(R' = \frac{R}{{\sqrt 2 }}\)