\(k = \frac{{2.303}}{{2 \times {{10}^2}}}{\log _{10}}\frac{{800}}{{50}} = \frac{{2.303}}{{2 \times {{10}^2}}}{\log _{10}}16\)
\( = \frac{{2.303}}{{2 \times {{10}^2}}}{\log _{10}}{2^4} = \frac{{2.303}}{{2 \times {{10}^4}}} \times 4 \times 0.301\)
\( = 1.38 \times {10^{ - 2}}\,\,{s^{ - 1}}\)
તબક્કો $: I :$ $2A $ $\rightleftharpoons$ $ X $ ઝડપી.
તબક્કો $II :$ $X + B $ $\rightleftharpoons$ $Y$ ધીમી
તબક્કો $III :$ $Y + B$ નીપજ ઝડપી આખી પ્રક્રિયા કયા નિયમ પર આધારિત છે ?
${O_3}(g)\, + \,C{l^ * }(g)\, \to \,{O_2}(g) + Cl{O^ * }(g)$ ..... $(i)$ $[{K_i} = 5.2 \times {10^9}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
$Cl{O^ * }(g) + {O^ * }(g)\, \to \,{O_2}(g) + \,C{l^ * }(g)$ ..... $(ii)$ $[{K_{ii}} = 2.6 \times {10^{10}}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
તો સમગ્ર પ્રક્રિયા ${O_3}(g){\mkern 1mu} + {\mkern 1mu} {O^*}(g){\mkern 1mu} \to {\mkern 1mu} 2{O_2}(g)$ માટે સમગ્ર પ્રક્રિયાનો વેગ .......... $L\,\,mo{l^{ - 1}}\,{s^{ - 1}}$ અચળાંક કોની સૌથી નજીક હશે ?