\(\therefore \) Weight of object will be proporational to \('g'\) \((acceleration\, due\, to\,gravity)\) Given ;
\(\frac{{{W_{earth}}}}{{{W_{planet}}}} = \frac{9}{4} = \frac{{{g_{earth}}}}{{{g_{planet}}}}\)
Also,
\({g_{surface}} = \frac{{GM}}{{{R^2}}}\) \((M is mass planet,
G is unversal gravitational constant, R is radius of planet)\)
\(\therefore \frac{9}{4} = \frac{{G{M_{earth}}R_{planet}^2}}{{G{M_{planet}}R_{earth}^2}} = \frac{{{M_{earth}}}}{{{M_{planet}}}} \times \frac{{R_{planet}^2}}{{R_{earth}^2}}\)
\( = 9\frac{{R_{planet}^2}}{{R_{earth}^2}}\)
\(\therefore {R_{planet}} = \frac{{{R_{earth}}}}{2} = \frac{R}{2}\)