Projection velocity of the projectile, \(v_{ p }=3 vesc\)
Mass of the projectile \(=m\)
Velocity of the projectile far away from the Earth \(=v_{ f }\)
Total energy of the projectile on the Earth \(=\frac{1}{2} m v_{ p }^{2}-\frac{1}{2} m v_{ ec }^{2}\)
Gravitational potential energy of the projectile far away from the Earth is zero.
Total energy of the projectile far away from the Earth \(=\frac{1}{2} m v_{f}^{2}\)
From the law of conservation of energy, we have \(\frac{1}{2} m v_{ p }^{2}-\frac{1}{2} m v_{ ec }^{2}=\frac{1}{2} m v_{ f }^{2}\)
\(v_{ f }=\sqrt{v_{ p }^{2}-v_{ cec }^{2}}\)
\(=\sqrt{\left(3 v_{ cec }\right)^{2}-\left(v_{ cec }\right)^{2}}\)
\(=\sqrt{8} v_{esc}\)
\(=\sqrt{8} \times 11.2=31.68 \;km / s\)