\(\,\left( {\,\because \,\,\alpha = \frac{l}{r}\,} \right)\,\,\,\)
અને \({R_{XZY}} = \frac{R}{{2\pi r}} \times r(2\pi - \alpha ) = \frac{R}{{2\pi }}(2\pi - \alpha )\)
\(\therefore {R_{eq}} = \frac{{{R_{XWY}}\,{R_{XZY}}}}{{{R_{XWY}} + {R_{XZY}}}}\)
\( = \frac{{\frac{{R\alpha }}{{2\pi }} \times \frac{R}{{2\pi }}(2\pi - \alpha )}}{{\frac{{R\alpha }}{{2\pi }} + \frac{{R(2\pi - \alpha )}}{{2\pi }}}}\,\)
\( = \frac{{R\alpha }}{{4{\pi ^2}}}(2\pi - \alpha )\)