$R$ જેટલી ત્રિજ્યાં અને $m$ જેટલું દળ ધરાવતી પાતળી વિંટી તેનાં પરિધના એક નિશ્ચિત બિંદુ ઊર્ધ્વતલમાં લટકાવેલી છે. તેનાં દોલનોનો આવર્તકાળ કેટલો થશે ?
Medium
Download our app for free and get started
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
જો સાદા લોલકના દોલકનું દળ વધારીને તેનાં પ્રારંભિક દળ કરતાં ત્રણ ગણું અને તેની લંબાઈ મૂળ (પ્રારંભિક) લંબાઈ કરતાં અડધી કરવામાં આવે તો દોલનનો નવો આવર્તકાળ, તેના પ્રારંભિક (મૂળં) આવર્તકાનના $\frac{x}{2}$ ગણો થાય છે. $x$ નું મૂલ્ય. . . . . . . . . . છે.
$x=(5.0 \,m ) \cos \left[\left(2 \pi rad s ^{-1}\right) t+\pi / 4\right]$ સમીકરણ અનુસાર એક પદાર્થ સરળ આવર્તગતિ કરે છે. $t=1.5 \,s$ સમયે તેનાં પર લાગતો પ્રવેગ ............ $m/s^2$ હશે.
આકૃતિમાં દર્શાવ્યા મુજબ શિરોલંબ ગોઠવેલ સ્પ્રિંગ પર હલકા સપાટ પાટિયા પર $2\; kg$ દળનો પદાર્થ મૂકેલો છે. સ્પ્રિંગ અને પાટિયાનું દળ અવગણ્ય છે. સ્પ્રિંગને થોડી દબાવીને છોડી દેતાં તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $200\; N/m$ છે. આ દોલનનો ઓછામાં ઓછો કંપવિસ્તાર કેટલો હોવો જોઇએ જેથી પદાર્થ એ પાટિયા પરથી છૂટો પડી જાય? ($g=10 m/s^2$ લો)
$L$ લંબાઈ, $M$ દળ અને $A$ આડછેદ ધરાવતા નળાકારને દળરહિત સ્પ્રિંગ સાથે બાંધીને એવી રીતે લટકવવામાં આવે છે કે જેથી સમતોલન સમયે અડધું નળાકાર $\sigma$ ઘનતાવાળા પ્રવાહીમાં ડૂબેલું રહે.જ્યારે નળાકારને નીચે તરફ થોડું ખેંચીને મુક્ત કરવામાં આવે ત્યારે તે નાના કંપવિસ્તારથી દોલનો કરે છે.નળાકારના દોલનો માટેનો આવર્તકાળ $T$ કેટલો મળે?