\(|\vec{A}+\vec{B}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}+2 \vec{A} \cdot \vec{B}\)
\(=A+B+2 A B \cos \theta\) And The formula for \(|\vec{A}-\vec{B}|^{2}\) is,
\(|\vec{A}-\vec{B}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}-2 \vec{A} \cdot \vec{B}\)
\(=A+B-2 A B \cos \theta\)
It is given that,
\(|\vec{A}+\vec{B}|^{2}=|\vec{A}-\vec{B}|^{2}\)
\(A+B+2 A B \cos \theta=A+B-2 A B \cos \theta\)
\(4 A B \cos \theta=0\)
\(\cos \theta=0\)
\(\theta=90^{\circ}\)