ज्ञात है,$ \tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1 }\frac{3}{5}$
दायाँ पक्ष $= \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$
मान लीजिए $\sin^{-1} \left(\frac{5}{13}\right) $
$= x \Rightarrow \sin x =\frac{5}{13}$
$\because 1-\sin ^{2} x = \cos ^{2} x $
$ \Rightarrow 1-\left(\frac{5}{13}\right)^{2} = \cos ^{2} x$
$\Rightarrow \frac{169-25}{169} = \cos ^{2} x $
$ \Rightarrow \frac{144}{169} = \cos ^{2} x $
$ \Rightarrow \frac{12}{13} = \cos x$
$\therefore \tan x = \frac{\sin x}{\cos x}$
$ \Rightarrow \tan x = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12}$
$ \Rightarrow x = \tan^{-1}\frac{5}{12}$
माना $\cos ^{-1} \frac{3}{5} = y $
$\Rightarrow \cos y = \frac{3}{5}$
$\because 1-\cos ^{2} y = \sin ^{2} y$
$ \Rightarrow 1 - \left(\frac{3}{5}\right)^{2} = \sin ^{2} y$
$\Rightarrow \frac{25-9}{25}= \sin ^{2} y$
$ \Rightarrow \frac{16}{25} = \sin ^{2} y$
$ \Rightarrow \frac{4}{5} = \sin y$
$\therefore \tan y = \frac{\sin y}{\cos y}$
$ \Rightarrow \tan y = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}$
$ \Rightarrow y = \tan ^{-1} \frac{4}{3}$
अत: ज्ञात समीकरण का प्रारूप इस प्रकार है
$\tan ^{-1} \frac{63}{16} = x + y$
$ \Rightarrow \tan ^{-1} \frac{63}{16} = \tan ^{-1}\left(\frac{5}{12}\right) + \tan ^{-1}\left(\frac{4}{3}\right)$
$\therefore$ दायाँ पक्ष $= \tan ^{-1}\left(\frac{5}{12}\right) + \tan ^{-1}\left(\frac{4}{3}\right) = \tan ^{-1}\left(\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}\right) [ \because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)]$
$= \tan ^{-1}\left(\frac{\frac{15+48}{12 \times 3}}{\frac{12 \times 3-20}{12 \times 3}}\right) = \tan ^{-1}\left(\frac{63}{36} \times \frac{36}{36-20}\right) = \tan ^{-1}\left(\frac{63}{16}\right) =$ बायाँ पक्ष
$\therefore$ बायाँ पक्ष $=$ दायाँ पक्ष इति सिद्धम्
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
$\tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right), |x| < 1, y > 0$ तथा $x y < 1$ में से प्रत्येक का मान ज्ञात कीजिए।