Then, \(H_2C_2O_4 = (10-x)\,gm\)
\(\therefore \,{n_{NaHC{O_3}}} = \frac{x}{{84}}\)
\(2NaHC{O_3} \to N{a_2}C{O_3} + {H_2}O + C{O_2}\)
\(\therefore {n_{C{O_2}}} = \frac{x}{{168}}\)
Total \(C{O_2} = \frac{x}{{168}} + \frac{{10 - x}}{{90}} = \frac{{0.25}}{{25}}\)
On solving \('x'\)
\(\% = \frac{x}{{10}} \times 100 = 10\,x\)
\({n_{{H_2}{C_2}{O_4}}} = \left( {\frac{{10 - x}}{{90}}} \right)\)
\({H_2}{C_2}{O_4} \to {H_2}O + C{O_2} + CO\)
\(\therefore {n_{C{O_2}}} = \left( {\frac{{10 - x}}{{90}}} \right)\)
[પરમાણ્વીય દળ: $K : 39.0\, u ; O : 16.0 \,u ; H : 1.0\, u ]$