Features
Discover
How it works
Resources
Question Answer
Download App
Home
Questions
JEE
SECTION - A [MATHS - MCQ]
ગુજરાતી માધ્યમ
$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
A
${{n(n + 1)} \over 2}{\log _a}2$
B
${{n(n + 1)} \over 2}{\log _2}a$
C
${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$
D
એકપણ નહી.
Medium
Download our app for free and get started
Solution
a
(a) \(\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = \sum\limits_{n = 1}^n {{{\log }_a}{2^n}} = x = 1\)
\(= {\log _a}2.{{n(n + 1)} \over 2} = {{n(n + 1)} \over 2}{\log _a}2\).
ધોરણ 11 સાયન્સ
JEE
STD 11 - basic of algoritham
MATHS
Share
0
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!
No signup needed.*
Download App
Similar Questions
1
જો ${{{{\sin }^2}x + 1} \over {2{{\sin }^2}x - 5\sin x + 3}}$=${A \over {(2\sin x - 3)}} + {B \over {(\sin x - 1)}} + C$, તો
View Solution
2
${{{x^2} + 13x + 15} \over {(2x + 3)\,{{(x + 3)}^2}}} = $
View Solution
3
$x$ ની કેટલી કિમંતો સમીકરણ ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$ નું સમાધાન કરે.
View Solution
4
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
View Solution
5
જો ${x^y} = {y^x},$ તો ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ કે જ્યાં $k = . . . . $
View Solution
6
જો ${{ax - 1} \over {(1 - x + {x^2})\,(2 + x)}} = {x \over {1 - x + {x^2}}} - {1 \over {2 + x}}$, તો $a = $
View Solution
7
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
View Solution
8
જો ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$ તો $\sum {(1/x) = } $
View Solution
9
જો $x = 3 - \sqrt {5,} $ તો ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
View Solution
10
$\sqrt {(3 + \sqrt 5 )} = . .$ .
View Solution