$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
  • A${{n(n + 1)} \over 2}{\log _a}2$
  • B${{n(n + 1)} \over 2}{\log _2}a$
  • C${{{{(n + 1)}^2}{n^2}} \over 4}{\log _2}a$
  • D
    એકપણ નહી.
Medium
Download our app for free and get startedPlay store
a
(a) \(\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = \sum\limits_{n = 1}^n {{{\log }_a}{2^n}} = x = 1\)

\(= {\log _a}2.{{n(n + 1)} \over 2} = {{n(n + 1)} \over 2}{\log _a}2\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${{{{\sin }^2}x + 1} \over {2{{\sin }^2}x - 5\sin x + 3}}$=${A \over {(2\sin x - 3)}} + {B \over {(\sin x - 1)}} + C$, તો
    View Solution
  • 2
    ${{{x^2} + 13x + 15} \over {(2x + 3)\,{{(x + 3)}^2}}} = $
    View Solution
  • 3
    $x$ ની કેટલી કિમંતો સમીકરણ ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$ નું સમાધાન કરે.
    View Solution
  • 4
    ${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
    View Solution
  • 5
    જો ${x^y} = {y^x},$ તો ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ કે જ્યાં $k = . . . . $
    View Solution
  • 6
    જો ${{ax - 1} \over {(1 - x + {x^2})\,(2 + x)}} = {x \over {1 - x + {x^2}}} - {1 \over {2 + x}}$, તો $a = $
    View Solution
  • 7
    ${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
    View Solution
  • 8
    જો ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$ તો $\sum {(1/x) = } $
    View Solution
  • 9
    જો $x = 3 - \sqrt {5,} $ તો ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
    View Solution
  • 10
    $\sqrt {(3 + \sqrt 5 )}  = . .$ .
    View Solution