Mass of second object, \(m_{2}=2.00 \mathrm{kg}\)
Mass of third object, \(m_{3}=3.00 \mathrm{kg}\)
Distance of first object from \(x\) \(-axis\), \(r_{1}=3.00 \mathrm{m}\)
Distance of second object from \(x\) \(-\)axis, \(r_{2}=-2.00 \mathrm{m}\)
Distance of third object from \(\mathrm{x}\) \(-axis,\) \(r_{3}=-4.00 \mathrm{m}\)
Angular velocity, \(\omega=2 \mathrm{rad} / \mathrm{s}\)
\(I=\sum_{1}^{n} m_{i} r_{i}^{2}\)
\(I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}\)
\(I=(4.00 \mathrm{kg})(3.00 \mathrm{m})^{2}+(2.00 \mathrm{kg})(-2.00 \mathrm{m})^{2}+(3.00 \mathrm{kg})(-4.00 \mathrm{m})^{2}\)
\(I=92 \mathrm{kg} . \mathrm{m}^{2}\)
\(K \cdot E_{\text {rotational }}=\frac{1}{2} I \omega^{2}\)
\(K . E_{\text {rotational }}=\frac{1}{2}\left(92 \mathrm{kg} . \mathrm{m}^{2}\right)(2 \mathrm{rad} / \mathrm{s})^{2}=184 \mathrm{J}\)