Let, \(F_1, F_2, F_4, F_8 \ldots \ldots\) be the forces of gravitation due masses ' \(m\) ' at \(x=1,2,4,8 \ldots\) respectively.
\(\Rightarrow F_1=\frac{G m^2}{1^2}\)
\(F_2=\frac{G m^2}{2^2}\)
\(F_4=\frac{G m^2}{4^2}\)
\(F_8 =\frac{G m^2}{8^2}\)
\(F_1+F_2+F_4+F_8 \ldots=G m^2\left(\frac{1}{1}+\frac{1}{4}+\frac{1}{16}+\frac{1}{64} \ldots\right)\)
infinite \(G.P\). with common ratio \(=\frac{1}{4}\)
For an infinite \(G.P\), sum \(=\left(\frac{a}{1-r}\right)\)
\(a\) is the first term
\(r\) is the common ratio
\(\Rightarrow \text { Sum }=\frac{1}{1-\frac{1}{4}}=\left(\frac{4}{3}\right)\)
\(\Rightarrow F_1+F_2+F_4+F_8 \ldots \ldots=\frac{4}{3} G m^2\)
(પૃથ્વી માટે ભૂસ્તરીય કક્ષાની ત્રિજ્યાં $4.2 \times 10^4 \mathrm{~km}$ આપેલ છે.)