\( = 1{m^2} \times \frac{{100}}{{100}}m = 1\,{m^3}\)
As we know, density of water,
\(d = {10^3}\,kg/{m^3}\)
Therefore, mass of this volume of water,
\(M = d \times v = {10^3} \times 1 = {10^3}\,kg\)
Average terminal velocity of rain drop
\(v = 9\,m/s\,\left( {given} \right)\)
Therefore, energy transferred by rain,
\(E = \frac{1}{2}m{v^2}\)
\( = \frac{1}{2} \times {10^3} \times {\left( 9 \right)^2}\)
\( = \frac{1}{2} \times {10^3} \times 81 = 4.05 \times {10^4}J\)
$( g =9.8\,m / s ^2$ આપેલું છે.)
$\left( g =980 \,cm / s ^{2}\right)$