\(\frac{d x}{d t}=v_x=4\)
\(\frac{d v_x}{d t}=a_x=0\)
\(y=3 t+8 t^2\)
\(\frac{d y}{d t}=v_y=3+16 t\)
\(\frac{d v_y}{d t}=a_y=16\)
the motion will be uniformly accelerated motion.
For path
\(\mathrm{x}=2+4 \mathrm{t}\)
\(\frac{(\mathrm{x}-2)}{4}=\mathrm{t}\)
Put this value of \(t\) is equation of \(y\)
\(y=3\left(\frac{x-2}{4}\right)+8\left(\frac{x-2}{4}\right)^2\)
this is a quadratic equation so path will be parabola.
Correct answer \((4)\)