$ = \Delta {{\text{S}}^\circ }_{X{Y_3}} - [\frac{1}{2}\Delta {S^\circ }_{{X_2}} + \frac{3}{2}\Delta {S^\circ }_{{Y_2}} = 50 - [\frac{1}{2} \times 60 + \frac{3}{2} \times 40]{\mkern 1mu} $
$ = 50 - [30 + 60]{\mkern 1mu} $
$ = - 40{\mkern 1mu} {\mkern 1mu} sq/{\mkern 1mu} {{\text{K}}^{{\text{ - 1}}}}{\mkern 1mu} $
$\Delta {\text{G}} = \Delta H - T\Delta S$ સંતુલને $\Delta {\text{G}} = {\text{0}}\,\,\,\,\,\therefore \,\,\Delta {\text{H}} = {\text{T}}\Delta {\text{S}}\,\,\,\,\,\,{\text{T}} = \frac{{\Delta {\text{H}}}}{{\Delta {\text{S}}}} = \frac{{ - 30000}}{{ - 40}} = 750\,K$