since $\Delta G=\Delta H-T \Delta S$
so at equilibrium $\Delta H-T \Delta S=0$
or $\quad \Delta H=T \Delta S$
For the reaction
$\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}$
$\Delta H=-30 \,k J$ (given)
Calculating $\Delta S$ for the above reaction, we get
$\Delta S=50-\left[\frac{1}{2} \times 60+\frac{3}{2} \times 40\right] \,J K^{-1}$
$=50-(30+60) \,J \,K^{-1}$
$=-40 \,J \,K^{-1}$
At equilibrium, $T \Delta S=\Delta H$
$[\text { as } \quad \Delta G=0]$
$\therefore \quad T \times(-40)=-30 \times 1000$
$[\text { as } 1\, k J=1000 \,J]$
$\quad T=\frac{-30 \times 1000}{-40}=\quad 750 \,K$
આપેલ : પાણીની બાષ્પીભવન એન્થાલ્પી $45\,kJ\,mol ^{-1}$
$C, H$ અને $O$ નું મોલર દળ $12,1$ અને $16\,g\,mol ^{-1}$.
($\Delta H$ અને $\Delta S$ તાપમાન સાથે બદલાતા નથી તેમ ધારો)