$ = \Delta {{\text{S}}^ \circ }_{X{Y_3}} - [\frac{1}{2}\Delta {S^ \circ }_{{X_2}} + \frac{3}{2}\Delta {S^ \circ }_{{Y_2}} = 50 - [\frac{1}{2} \times 60 + \frac{3}{2} \times 40]\, = 50 - [30 + 60]\, = - 40\,\,sq \div \,\,{{\text{K}}^{{\text{ - 1}}}}\,$
$\Delta {\text{G}} = \Delta H - T\Delta S$ સંતુલને $\Delta {\text{G}} = {\text{0}}\,\,\,\,\,\therefore \,\,\Delta {\text{H}} = {\text{T}}\Delta {\text{S}}\,\,\,\,\,\,{\text{T}} = \frac{{\Delta {\text{H}}}}{{\Delta {\text{S}}}} = \frac{{ - 3000}}{{ - 40}} = 750\,K$
$2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}_2(\mathrm{~g}) 2 \mathrm{CO}_2(\mathrm{~g}), \Delta \mathrm{H}=-787 \mathrm{KJ} ; \mathrm{H}_2(\mathrm{~g})+$$\mathrm{H}_2 \mathrm{O}, \Delta \mathrm{H}=-286 \mathrm{KJ}$
$\frac{1}{2} \mathrm{O}_2 \mathrm{C}_2 \mathrm{H}_2(g)+\frac{5}{2} \mathrm{O}_2(g) \rightarrow 2 \mathrm{CO}_2(g)+\mathrm{H}_2 \mathrm{O}(I), \Delta H=-1310KJ$
$CH_4\,(g)\,\,186.2\,JK^{-1}\,mol^{-1}$
$O_2\,(g)\,\,205.2\,JK^{-1}\,mol^{-1}$
$CO_2\,(g)\,\,213.6\,JK^{-1}\,mol^{-1}$
$H_2O\,(g)\,\,69. 9\,JK^{-1}\,mol^{-1}$
નીચેની પ્રક્રિયા માટે એન્ટ્રોપી ફેરફાર $(S^o)$ ........$JK^{-1}\,mol^{-1}$
$CH_4\,(g) + 2O_2\,(g) \to CO_2\,(g) + 2H_2O(l)$