તબક્કો $: I :$ $2A $ $\rightleftharpoons$ $ X $ ઝડપી.
તબક્કો $II :$ $X + B $ $\rightleftharpoons$ $Y$ ધીમી
તબક્કો $III :$ $Y + B$ નીપજ ઝડપી આખી પ્રક્રિયા કયા નિયમ પર આધારિત છે ?
$2NO \rightleftharpoons {N_2}O + \left[ O \right]$
${O_3} + \left[ O \right] \to 2{O_2}\,(slow)$
તો પ્રકિયાનો કમ જણાવો.
| $A[M]$ | $B[M]$ |
સર્જન નો પ્રારંભિક વેગ $D$ |
|
| $i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
| $ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
| $ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
| $iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપ૨ની માહિતી ના આધારે સમગ્ર પ્રક્રિયાનો ક્રમ ........ છે.
$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$
જ્યારે પ્રક્રિયા, $A$ નું $1.5 \mathrm{~atm}$ દબાણ અને $\mathrm{B}$ નાં $0.7 \mathrm{~atm}$ દબાણ સાથે પ્રારંભ (શરૂ) કરવામાં આવ્યો હોય ત્યારે પ્રક્રિયાનો પ્રારંભિક વેગ $r_1$ તરીક નોંધવામાં આવ્યો. થોડાક સમય પછી, જ્યારે $C$ નું દબાણ $0.5 \mathrm{~atm}$ થાય છે ત્યારે $r_2$ વેગ નોંધવામા આવ્યો, $r_1: r_2$ ગુણોત્તર ............ $\times 10^{-1}$ છે.
(નજીક નો પૂર્ણાક)
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$23 \mathrm\ {sec}$ પછી જો વાયુઆનું કુલ દબાણ $200\ torr$ મળી આવેલ હોય અને ખુબજ લાંબા સમય બાદ $A$ નાં સંપૂર્ણ વિધટન પર $300\ torr$ મળી આવેલ હોય તો આપેલ પ્રક્રિયા નો વેગ અચળાંક ......... $\times 10^{-2} \mathrm{~s}^{-1}$ છે. [આપેલ : $\left.\log _{10}(2)=0.301\right]$
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$
$A$ ની પ્રારંભિક સાંદ્રતા થી $1 / 4^{\text {th }}$ થવા માટે લાગતો સમય એજ પ્રક્રિયામાં $1 / 2$ થવા માટેના લાગતા સમય કરતા બમણો છે. જ્યારે $B$ ની સાંદ્રતામાં ફેરફાર વિરુદ્ધ સમયની આલેખ દોરવામાં આવે તો, પરિણામી આલેખ ઋણ ઢાળ સાથે સીધી રેખા અને સાંદ્રતા અક્ષ પર ધન આંતછેદ આપે છે. સમગ્ર પ્રક્રિયાનો ક્રમ ............ છે.
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ (પ્રક્રિયા $1)$
$\mathrm{P} \rightarrow \mathrm{Q}$ (પ્રક્રિયા $2$)
પ્રક્રિયા $1$ : પ્રક્રિયા $2$ ના અર્ધં આયુષ્ય નો ગુણોત્તર $5: 2$ છે. પ્રક્રિયા $1$ અને પ્રક્રિયા $2$ ને $2 / 3^{\text {dd }}$ and $4 / 5^{\text {dd }}$ પૂર્ણ થવા માટે લાગતા સમયને અનુક્રમે $t_1$ અને $t_2$ તરીકે રજૂ કરવા આવે તો $t_1: t_2$ ગુણોત્તર નું મૂલ્ય ........... $\times 10^{-1}$ છે. (નજીક નો પૂર્ણાક)
[આપેલ : $\log _{10}(3)=0.477$ અને $\log _{10}(5)=0.699$ ]
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$
$\text { rate }=\mathrm{k}[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 2}$
$A$ અને $B$ એમ દરેક ની સાદ્રતા $1 M$ લઇ ને પ્રક્રિયા શરૂ કરવામાં આવે છે. જો વેગ અયળાંક ($k$) એ $4.6 \times 10^{-2} \mathrm{~s}^{-1}$, હોય તો $A$ ને $0.1 \mathrm{M}$ થવા માટે જરૂરી સમય .................. sec છે. (નજીક નો પૂર્ણાંક)
$\mathrm{A}+\mathrm{B} \underset{\text { Step } 3}{\text { Step } 1} \mathrm{C} \xrightarrow{\text { Step } 2} \mathrm{P}$
પ્રથમના વર્તુળ પ્રક્રિયાની માહિતી નીચે સૂચવેલી છે.
| સ્ટેપ |
Rate constant $\left(\sec ^{-1}\right)$ |
Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
| $1$ | ${k}_1$ | $300$ |
| $2$ | ${k}_2$ | $200$ |
| $3$ | ${k}_3$ | $\mathrm{Ea}_3$ |
ઉપરોક્ત રીતેની પ્રક્રિયાનું વધારણીક વર્તુળ $(k)$ આપવામાં આવે છે. $\mathrm{k}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_3}$ અને ઉપરોક્ત વધારણીક તાપ $(E_2)= 400$ કેલ્વિન છે, તો $\mathrm{Ea}_3$ નું મૂલ્ય છે $\mathrm{kJ} \mathrm{mol}^{-1}$ (નજીકની પૂર્ણાંક).
વિધાન $I$ : $A+B \rightarrow C$ પ્રક્રિયા માટે વેગ નિયમ, વેગ $(r)=k[A]^2[B]$ છે. જ્યારે $A$ અને $B$ એમ બંને ની સાંદ્રતા બમણી કરવામાં આવે છે ત્યારે પ્રક્રિયા વેગ વધી ને " $x$ " ગણો થાય છે.
વિધાન $II$ :
(Image)
આકૃતિ " " $y$ " ક્રમ પ્રક્રિયા માટે સાંદ્રતામાં તફ઼ાવત સામે સમયનો આલેખ દર્શાંવે છે. $x+y$ નું મૂલ્ય . . . . . છે.
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$S.\ No$ સમય/s કુલ દબાણ/(atm)
$1.$ $0$ $0.1$
$2.$ $115$ $0.28$
પ્રક્રિયાનો વેગ અચળાંક _______________$\times 10^{-2} \mathrm{~s}^{-1}$ (નજીકનાં પૂનાંકમાં)
$2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$
પ્રક્રિયાનો ક્રમ................ છે.
| $1$ | $2$ | $3$ | |
| $\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
| Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
$200\,K$ અને $300\,K$ પર ઉપરની પ્રક્રિયાના વેગ અચળાંકો અનુક્રમે $0.03\,min ^{-1}$ અને $0.05\,min ^{-1}$ છે. પ્રક્રિયા માટેની સક્રિયકરણ શકિત $.........J$ છે. (નજીકનો પૂર્ણાંક)
(આપેલ : In $10=2.3$
$R =8.3\,J\,K ^{-1}\, mol ^{-1}$
$\log 5=0.70$
$\log 3=0.48$
$\log 2=0.30$
ઉપરની પ્રક્રિયા શૂન્યક્રમની છે.આ પ્રક્રિયાને અર્ધ-આયુષ્ય $50\,min$ છે.$A$ની સાંદ્રતાને તેના શરૂઆતના મૂલ્યથી $\frac{1}{4}$ ઘટાડવા માટે લાગતો સમય $............\,min$ છે.(નજીકનો પૂર્ણાક)
નીચે આપેલ પ્રક્કિયાવિધી દ્વારા થઈ રહી છે.
$NO + Br _2 \Leftrightarrow NOBr _2 \text { (fast) }$
$NOBr _2+ NO \rightarrow 2 NOBr$(ધીમી)
પ્રક્રિયાનો સમગ્ર ક્રમ $........$
| Rate $mol\,L^{-1}\,s^{-1}$ | $[A]$ $mol\,L^{-1}$ | $[B]$ $mol\,L^{-1}$ |
| $0.10$ | $20$ | $0.5$ |
| $0.40$ | $x$ | $0.5$ |
| $0.80$ | $40$ | $y$ |
$x$ અને $y$ ના મુલ્યો શું છે ?
| $p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
| સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.
ઉપરોક્ત પ્રક્રિયાનો અભ્યાસ $FeSO _4$ ની સાંદ્રતાનું નિરીક્ષણ કરીને $300\,K$ પર કરવામાં આવ્યો હતો, જેમાં પ્રારંભિક સાંદ્રતા $10\,M$ હતી અને અડધા કલાક પછી $8.8\,M$ થઈ ગઈ હતી. $Fe _2\left( SO _4\right)_3$ ના ઉત્પાદનનો વેગ એ $..........\,\times 10^{-6}\,mol\,L ^{-1}\,s ^{-1}$ છે.
$(A)$ સમગ્ર પ્રક્રિયાનો ક્રમ છે.
$(B)$ આ પ્રક્રિયાનો ક્રમ શોધી શકાતો નથી.
$(C)$ $I$ અને $III$ વિભાગ માં, પ્રક્રિયા અનુક્રમે પ્રથમ અને શૂન્ય ક્રમની છે.
$(D)$ વિભાગ $II$ માં, પ્રક્રિયા પ્રથમક્રમની છે.
$(E)$ વિભાગ $II$ માં, પ્રક્રિયાનો ક્રમ $0.1$ થી $0.9$ વિસ્તાર માં છે.
આપેલ : $\log 2=0.3010,\log 3=0.4771,\log 5=0.6989$
$A.$ $1000\,s$ માં પ્રક્રિયા પૂર્ણ થાય છે.
$B.$ પ્રક્રિયા $500\,s$ નો અર્ધ-આયુષ્ય ધરાવે છે.
$C.$ $90 \%$ પૂર્ણ થવા માટેનો લાગતો જરૂરી સમય કરતાં $10 \%$ પૂર્ણ થવા માટે નો જરૂરી સમય $25$ ગણો છે.
$D.$ વિયોજન અંશ એ (1- $\left.e ^{-k t}\right)$ ને સમાન છે.
$E.$ વેગ (દર) અને વેગ અચળાંક (દર અચળાંક) સમાન એકમ ધરાવે છે.
(આપેલ : $\ln 10=2.303\,\log 2=0.3010$ )
$A$.વેગ અચળાંક નો તાપમાન પર આધાર પ્રબળ, સક્રિયકરણ શક્તિ (ઊર્જા) ઊચી હોય છે
$B$.જો પ્રક્રિયા શૂન્ય સક્રિકરણ શક્તિ ધરાવે, તો તેનો વેગ તાપમાન થી સ્વતંત્ર છે
$C$.વેગ અચળાંક નો તાપમાન પર આધાર પ્રબળ, સક્રિયકરણ શક્તિ (ઊર્જા) નીચી હોય છે
$D$.જો તાપમાન અને વેગ અયળાંક વચ્ય જો સહસંબંધ ના હોય તો પછી તેનો ઈ અર્થ થાય છે કે પ્રક્રિયા ઋણ સક્રિયકરણ શક્તિ ધરાવે છે.
$A$. શૂન્ય ક્રમની પ્રક્રિયાઆના અનુગામી અર્ધ આયુષ્ય સમય સાથે ધટે છે.
$B$. રાસાયણિક સમીકરણ પ્રક્રિયક તરીકે દેખાતો પદાર્થ પ્રક્રિયાના (પ્રક્રિયાવેગને)દરને અસર કરી શકે નહી.
$C$. એક રાસાયણિક પ્રક્રિયાની આણિવક્તા અને ક્રમ અપૂર્ણાક સંખ્યા હોઈ શકે છે.
$D$. શૂન્ય અને દ્વિતિય ક્રમ પ્રક્રિયાનો વેગ અચળાંક અનુક્રમે $mol\,L ^{-1}\,s ^{-1}$ અને $mol ^{-1}\,L$ $s^{-1}$ છે.
ઉપરોક્ત પ્રક્રિયાનો અભ્યાસ $800^{\circ} C$ એ કરવામાં આવ્યો. યોગ્ય માહિતી નીચેના કોષ્ટકમાં આપેલી છે.
| Run | $H2$ નું પ્રારંભિક દબાણ / $kPa$ | $NO$ નું પ્રારંભેક દબાણ / $kPa$ | પ્રારંભિક વેગ $\left(\frac{- dp }{ dt }\right) /( kPa / s )$ |
| $1$ | $65.6$ | $40.0$ | $0.135$ |
| $2$ | $65.6$ | $20.1$ | $0.033$ |
| $3$ | $38.6$ | $65.6$ | $0.214$ |
| $4$ | $19.2$ | $65.6$ | $0.106$ |
$NO$ ના સંદર્ભે પ્રક્રિયાનો ક્રમ ......... છે
(આપેલ : $\log 2=0.30, \log 3=0.48$ )
(આપેલ:$R =8.31\,JK ^{-1}\,mol ^{-1}$)
જો સંયોજન $[B]$નું બનવું એ પ્રથમક્રમ ગતિકીને અનુસરતું હોય તો, અને $70 \,mins$ પછી $[A]$ ની સાંદ્રતા તેની પ્રારંભિક સાંદ્રતા કરતા અડધી મળી આવેલ છે. પ્રક્રિયાનો વેગ અચળાંક એ $x \times 10^{-6}\, s ^{-1}$ છે. તો $x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં $.....$ છે.
| પ્રયોગ | $\frac{[ X ]}{ mol \;L ^{-1}}$ | $\frac{[ Y ]}{ mol\; L ^{-1}}$ | $\frac{\text { Initial rate }}{ mol\; L ^{-1}\; min ^{-1}}$ |
| $I$ | $0.1$ | $0.1$ | $2 \times 10^{-3}$ |
| $II$ | $.2$ | $0.2$ | $4 \times 10^{-3}$ |
| $III$ | $0.4$ | $0.4$ | $M \times 10^{-3}$ |
| $IV$ | $0.1$ | $0.2$ | $2 \times 10^{-3}$ |
$M$ મૂલ્યનો સંખ્યાત્મક ગુણોત્તર $........$ છે. (નજીકનો પૂર્ણાંક)
$\gamma_{1} A +\gamma_{2} B \rightarrow \gamma_{3} C +\gamma_{4} D$
જ્યાં $v_{1}, v_{2}, v_{3}$ અને $v_{4}$ એ પૂર્ણાંક છે. $(i.e.$ $\left.1,2,3,4 \ldots . .\right)$
$10$ સેકન્ડોના અંતરાલ માં $C$ ની સાંદ્રતા $10\,m\,mol\,dm ^{-3}$ માંથી $20\,m\,mol\,dm ^{-3}$ માં ફેરફાર થાય છે.$D$નો દશ્ય થવાનો વેગ એ $B$ના અદશ્ય થવાના વેગ કરતા $1.5$ ગણો છે, ને $A$ ના અદશ્ય થવાના વેગ કરતા બમણો છે.પ્રાયોગિક રીતે $D$ના દશ્ય થવાનો વેગ $9,m\,mol\,dm ^{-3} \,s ^{-1}$ શોધવામાં આવ્યો.તેથી પ્રક્રિયાનો વેગ $\dots\dots\,\,m\,mol$$dm ^{-3} s ^{-1}.$
(આપેલું છે: $R =2\,cal\,K ^{-1}\,mol ^{-1}$ )
(આપેલ : $\ln 2=0.693)$
(આપેલું છે$: \ln 10=2.3, R =8.3 \,J\, K ^{-1} \,mol ^{-1}, \log 2=0.30$ )
(આપેલ : એન્ટીલોગ $antilog$ $0.125=1.333$,
$\text { antilog } 0.693=4.93 \text { ) }$
$CH _3 N _2 CH _3( g ) \rightarrow CH _3 CH _3( g )+ N _2( g )$
આ એક પ્રથમક્રમ પ્રક્રિયા છે. $600\, K$ પર સમય સાથે આંશિક દબાણમાં વિવિધતા નીચે આપેલ છે. પ્રક્રિયાનો અર્ધ આયુષ્ય $\times 10^{-5}\, s$ છે. [નજીકનો પૂર્ણાંક]
$\ln k=33.24-\frac{2.0 \times 10^{4} \,K }{ T }$
તે પ્રક્રિયાની સક્રિયકરણ ઊર્જા $.....\,kJ\, mol ^{-1}$ થશે. (નજીકનો પૂર્ણાંકમાં)
(આપેલ છે : $R =8.3 \,J \,K ^{-1} \,mol ^{-1}$ )
[આપેલ: $\ln 10=2.3$$R =8.3\, J \, K ^{-1}\, mol ^{-1}$]
(નજીકનાં પૂર્ણાકમાં રાઉન્ડ ઑફ) $\left[ R =8.314\, J \,K ^{-1} \,mol ^{-1}\right]$
આ પ્રક્રિયાનો $-10^{\circ} C$ પર અભ્યાસ કરાયો હતો અને નીચેની માહિતી મળી હતી.
| ક્રમ | $[ NO ]_{0}$ | $\left[ Cl _{2}\right]_{0}$ | $r _{0}$ |
| $1$ | $0.10$ | $0.10$ | $0.18$ |
| $2$ | $0.10$ | $0.20$ | $0.35$ |
| $3$ | $0.20$ | $0.20$ | $1.40$ |
$[ NO ]_{0}$ અને $\left[ Cl _{2}\right]_{0}$ શરૂઆતની સાંદ્રતા અને $r _{0}$ શરૂઆતનો પ્રક્રિયાનો વેગ છે, તો પ્રક્રિયાનો ક્રમ શું હશે?
$[$આપેલ છે :${R}=8.31\, {~J} \,{~K}^{-1} \,{~mol}^{-1} ; \log 6.36 \times 10^{-3}=-2.19$ $\left.10^{-4.79}=1.62 \times 10^{-5}\right]$
$2 {NO}_{({g})}+2 {H}_{2({~g})} \rightarrow {N}_{2({~g})}+2 {H}_{2} {O}_{({g})}$
|
$[NO]$ ${mol} {L}^{-1}$ |
${H}_{2}$ ${mol} {L}^{-1}$ |
વેગ ${mol}L^{-1}$ $s^{-1}$ |
|
| $(A)$ | $8 \times 10^{-5}$ | $8 \times 10^{-5}$ | $7 \times 10^{-9}$ |
| $(B)$ | $24 \times 10^{-5}$ | $8 \times 10^{-5}$ | $2.1 \times 10^{-8}$ |
| $(C)$ | $24 \times 10^{-5}$ | $32 \times 10^{-5}$ | $8.4 \times 10^{-8}$ |
${NO}$ના સંદર્ભમાં પ્રક્રિયાનો ક્રમ $....$ છે.
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $318 \,K$ પર ${N}_{2} {O}_{5}$ની પ્રારંભિક સાંદ્રતા $2.40 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ છે. $1$ કલાક પછી ${N}_{2} {O}_{5}$ની સાંદ્રતા $1.60 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ હતી. $318\, {~K}$ પર પ્રક્રિયાનો વેગ અચળાંક $.....\,\times 10^{-3} {~min}^{-1}.$ (નજીકના પૂર્ણાંકમાં)
[આપેલ છે: $\log 3=0.477, \log 5=0.699$ ]
$\left[\right.$ આપેલ છે $\left.: \log _{10} 2=0.301, \ln 10=2.303\right]$
${A}+{B} \rightarrow {M}+{N}$ $......$ ${kJ} {mol}^{-1}$ બરાબર છે. (નજીકના પૂર્ણાંકમાં)
કયા તાપમાને $(K$ માં) પ્રક્રિયાનો વેગ અચળાંક $10^{-4} s ^{-1}$ થશે તે શોધો ?(નજીકના પૂર્ણાંકમાં રાઉન્ડ ઑફ)
[આપેલ : $500\, K$ પર, પ્રક્રિયાનો વેગ અચળાંક $10^{-5} s^{-1}$ છે.]