\(=1.29 \times 100 m^{-1}\)
Given, \(R=520 \Omega, C=0.2 M, \mu\) (molar conductivity) \(=?\)
\(\mu=\kappa \times V \quad\left(\kappa \text { can be calculated as } \kappa=\frac{1}{R}\left(\frac{1}{a}\right)\right.\)
now cell constant is known.
Hence, \(\mu=\frac{1}{520} \times 129 \times \frac{1000}{0.2} \times 10^{-6} \mathrm{m}^{3}\)
\(=12.4 \times 10^{-4} \mathrm{Sm}^{2} \mathrm{mol}^{-1}\)
$Zn_{(s)} + Ag_2O_{(s)} + H_2O_{(l)} \rightleftharpoons $$2Ag_{(s)} + Zn^{2+}_{(aq)}+ 2OH^-_{(aq)}$
જો અર્ધકોષ પોટેન્શિયલ
$Zn^{2+}_{(aq)} + 2e^- \rightarrow Zn_{(s)}\,;\,\, E^o = - 0.76\, V$
$Ag_2O_{(s)} + H_2O_{(l)} + 2e^- \rightarrow 2Ag_{(s)} + 2OH^-_{(aq)}\,,$$E^o = 0.34\, V$
હોય, તો કોષ-પોટેન્શિયલ ......... $V$ થશે.
$(F = 96500 \,C\, mol^{-1})$
${[Fe\,{(CN)_6}]^{4 - }}\, \to \,{[Fe{(CN)_6}]^{3 - }}\, + \,{e^ - }\,;\,$ ${E^o}\, = \, - \,0.35\,V$
$\,F{e^{2 + }}\, \to \,F{e^{3 + }}\, + \,{e^ - }\,;$ ${E^o}\, = \, - \,0.77\,V$
$E_{{A^{3 + }}/A}^o = 1.50\,\,V\,,$ $E_{{B^{2 + }}/B}^o = 0.3\,\,V,$
$E_{{C^{3 + }}/C}^o = - \,0.74\,\,V,$ $E_{{D^{2 + }}/D}^o = - \,2.37\,\,V.$
યોગ્ય ક્રમ જેમાં કઈ વિવિધ ધાતુઓ કેથોડ પર જમા થાય છે
$F_{2(g)} + 2e^- \rightarrow 2F^-_{(aq)}\, ;$ $E^o = + 2.85\, V$
$Cl_{2(g)} + 2e^- \rightarrow 2Cl^-_{(aq)}\, ;$ $E^o = + 1.36\, V$
$Br_{2(l)} + 2e^- \rightarrow 2Br^-_{(aq)}\, ;$ $E^o = + 1.06\, V$
$I_{2(s)} + 2e^- \rightarrow 2I^-_{(aq)}\, ;$ $E^o = + 0.53\, V$
પ્રબળ ઓક્સિડેશનકર્તા અને રીડકશનકર્તા શું હશે ?