It can be shown that
1 a.m.u $=1.66 \times 10^{27}\,kg$.
According to Einstein, mass energy equivalence
$E = mc ^2$
Where $m =1.66 \times 10^{-27}\, kg$
$C =3 \times 10^8\, m / sec$, we get
$E =1.49 \times 10^{-10}\, J \left(1 Mev =1.6 \times 10^{-13}\, J \right)$
$E =\frac{1.49 \times 10^{-10}\, J }{1.6 \times 10^{-13}}\,Mev$
$E =931.25\,Mev$
Hence a change in mass of $1\,a. m.u$ (called mass defect) releases an energy equal to $931 \,Mev$.
$1\,amu =931\,Mev$ is used as a standard conversion.
સૂચિ - $I$ | સૂચિ- $II$ | ||
$A$. | સ્નિગ્ધતા અંક | $I$. | $[M L^2T^{–2}]$ |
$B$. | પૃષ્ઠ તાણ | $II$. | $[M L^2T^{–1}]$ |
$C$. | કોણીય વેગમાન | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | ચાક ગતિ ઊીર્ન | $IV$. | $[M L^0T^{–2}]$ |
નીચે આપેલા વિકલ્પોમાંથી સાચો ઉત્તર પસંદ કરો.