According to Einstein's mass energy equivalence, \(E=m c^{2}\) where \(c=\) velocity of light.
So, \(E=1.66 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2}=14.94 \times 10^{-11} J\)
\(E=\frac{14.94 \times 10^{-11}}{1.6 \times 10^{-19}} \mathrm{eV}\) where \(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{J}\)
\(E=931 \times 10^{6} \mathrm{eV}=931 \mathrm{MeV}\)