Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
એક ઘડિયાળ $S$ એક સ્પ્રિંગના દોલનોને આધારે છે. જ્યારે બીજી ઘડિયાળ $P$ સાદા લોલકને આધારે છે. બંને ઘડિયાળ પૃથ્વીના દર મુજબ જ ફરે છે. તે બંનેને પૃથ્વી જેટલી જ ઘનતા પરંતુ પૃથ્વીથી બે ગણી ત્રિજ્યા ધરાવતા ગ્રહ પર લઈ જવામાં આવે તો ક્યું વિધાન સત્ય છે ?
આપેલ આકૃતિમાં $200\, {g}$ અને $800\, {g}$ દળના બે પદાર્થ $A$ અને $B$ ને સ્પ્રિંગના તંત્ર વડે જોડેલ છે. જ્યારે તંત્રને જ્યારે મુક્ત કરવામાં આવે ત્યારે સ્પ્રિંગ તંત્ર ખેંચાયેલી સ્થિતિમાં હશે. સમક્ષિતિજ સપાટી ઘર્ષણરહિત છે. જો ${k}=20 \,{N} / {m} $ હોય, તો તેની કોણીય આવૃતિ (${rad} / {s}$ માં) કેટલી હશે?
$\mathrm{m}$ દળને અવગણ્ય દળ ધરાવતી સ્પ્રિંગ સાથે લટકાવવામાં આવે છે અને આ તંત્ર $f_1$ આવૃત્તિ થી દોલનો કરે છે. જો $9 \mathrm{~m}$ ના દળને આ જ સ્પ્રિંગ પર લટકાવતા દોલનોની આવૃત્તિ $f_2$ થાય છે.______$\frac{f_1}{f_2}$ નું મૂલ્ય હશે.
$K$ બળ અચળાંક ધરાવતી સ્પ્રિંગ પર એક પદાર્થ આકૃતિમાં દર્શાવ્યા મુજબ છે. તેની ગતિનું સમીકરણ $x(t)= A sin \omega t+ Bcos\omega t$, જ્યાં $\omega=\sqrt{\frac{K}{m}}$ છે. $t=0$ સમયે દળનું સ્થાન $x(0)$ અને વેગ $v(0)$ હોય, તો સ્થાનાંતરને $x(t)=C \cos (\omega t-\phi)$ મુજબ આપવામાં આવે છે, જ્યાં $C$ અને $\phi$ કેટલા હશે?