(હવામાં ધ્વનિની ઝડપ $= 340\, m/s$)
or \(\lambda=\frac{\mathrm{v}}{\mathrm{v}}=\frac{340 \mathrm{m} / \mathrm{s}}{340 \mathrm{Hz}}=1 \mathrm{m}\)
First resonating length,
\(l_{1}=\frac{\lambda}{4}=\frac{1}{4} \mathrm{m}=25 \mathrm{cm}\)
second resonating length,
\(l_{2}=\frac{3 \lambda}{4}=\frac{3 \times 1 \mathrm{m}}{4}=75 \mathrm{cm}\)
Third resonating length,
\(l_{3}=\frac{5 \lambda}{4}=\frac{5 \times 1 \mathrm{m}}{4}=125 \mathrm{cm}\)
So third resonance is not possible since the length of the tube is \(120 \mathrm{cm}\).
Minimum height of water necessary for resonance \(=120-75=45 \mathrm{cm}\)
${y_1} = 0.05\,\cos \,\left( {0.50\,\pi x - 100\,\pi t} \right)$
${y_2} = 0.05\,\cos \,\left( {0.46\,\pi x - 92\,\pi t} \right)$
તો તેનો વેગ $m/s$માં કેટલો મળે?