| $p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
| સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.
$\frac{\left( t _{1 / 2}\right)_1}{\left( t _{1 / 2}\right)_2}=\frac{\left( P _0\right)_1^{1- n }}{\left( P _{0_2}\right)_2^{1- n }}$
$\Rightarrow\left(\frac{4}{2}\right)=\left(\frac{50}{100}\right)^{1- n }$
$\Rightarrow 2=\left(\frac{1}{2}\right)^{1- n }$
$\Rightarrow 2=(2)^{ n -1}$
$\Rightarrow n -1=1$
$\Rightarrow=2$
( $R =$ મોલર વાયુ અચળાંક $= 8.314\,JK^{-1}\,mol^{-1}$ )