$p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.
$\frac{\left( t _{1 / 2}\right)_1}{\left( t _{1 / 2}\right)_2}=\frac{\left( P _0\right)_1^{1- n }}{\left( P _{0_2}\right)_2^{1- n }}$
$\Rightarrow\left(\frac{4}{2}\right)=\left(\frac{50}{100}\right)^{1- n }$
$\Rightarrow 2=\left(\frac{1}{2}\right)^{1- n }$
$\Rightarrow 2=(2)^{ n -1}$
$\Rightarrow n -1=1$
$\Rightarrow=2$
$T$ (in, $K$) $- 769$ , $1/T$ (in, $K^{-1}$ ) $- 1.3\times 10^{-3},$
$\log_{10}K - 2.9\,T$ (in, $K$) $- 667$, $1/T$ (in, $K^{-1}) - 1.5\times 10^{-3}$, $\log_{10}\,K - 1.1$
$2X \rightleftharpoons {X_2}$
${X_2} + Y \to {X_2}Y\,\left( {slow} \right)$
તો પ્રક્રિયાકમ જણાવો.
$2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$
પ્રક્રિયાનો ક્રમ................ છે.
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
પ્રયોગ |
$[A]$ ($mol\, L^{-1})$ |
$[B]$ ($mol\, L^{-1})$ |
પ્રક્રિયાની શરૂઆતનો દર $(mol\, L^{-1}$ $min^{-1})$ |
$I$ | $0.10$ | $0.20$ | $6.93 \times {10^{ - 3}}$ |
$II$ | $0.10$ | $0.25$ | $6.93 \times {10^{ - 3}}$ |
$III$ | $0.20$ | $0.30$ | $1.386 \times {10^{ - 2}}$ |
$A$ અડધો વપરાય તે માટેનો સમય મિનિટમાં કેટલો થાય