\(1 {M}\quad 1 {M} \quad 1 {M} \quad1 {M}\)
First check direction of reversible reaction.
Since \({Q}_{{c}}=\frac{[{C}][{D}]}{[{A}][{B}]}=1<{K}_{{eq} .} \Rightarrow\) reaction will move in forward direction to attain equilibrium state.
\(\Rightarrow {A}+{B} \rightleftharpoons {C}+{D}: {K}_{{eq}}=100\)
\(to \quad 1\quad 1\quad\quad 1\quad 1\)
\({t}_{\text {eq. }} \, 1-{x} \, 1-{x} \, 1+{x} \, 1+{x}\)
Now \(: {K}_{{eq}}=100=\frac{(1+{x})(1+{x})}{(1-{x})(1-{x})}\)
\(\Rightarrow 100=\left(\frac{1+x}{1-x}\right)^{2}\)
\((i)\) \(10=\left(\frac{1+{x}}{1-{x}}\right)\)
\(\Rightarrow 10-10 {x}=1+{x}\)
\(\Rightarrow 11 {x}=9\)
\(\Rightarrow {x}=\frac{9}{11}\)
\((ii)\) \(-10=\frac{1+{x}}{1-{x}}\)
\(\Rightarrow-10+10 {x}=1+{x}\)
\(\Rightarrow-9 x=-11\)
\(\Rightarrow x=\frac{11}{9}\)
\(\rightarrow\) \('x'\) cannot be more than one, therefore not valid. therefore equation concretion of \((D)=1+x\)
\(=1+\frac{9}{11}=\frac{20}{11}\)
\(=1.8181=181.81 \times 10^{-2}\)
\(\simeq 182 \times 10^{-2}\)
$X:2S{O_2} + {O_2} \rightleftharpoons 2S{O_3}$
$Y:PC{l_5} \rightleftharpoons PC{l_3} + C{l_2}$
$Z:2HI \rightleftharpoons {H_2} + {H_2}$
$Fe _{2} N ( s )+\frac{3}{2} H _{2}( g ) \rightleftharpoons 2 Fe ( s )+ NH _{3}( g )$