$\therefore {K_1} = \frac{{{{[NO]}^2}}}{{[{N_2}]\,[{O_2}]}}$ $\frac{1}{2}{N_2} + \frac{1}{2}{O_2}$ $\rightleftharpoons$ $NO$
$\therefore {K_2} = \frac{{[NO]}}{{{{[{N_2}]}^{1/2}}{{[{O_2}]}^{1/2}}}}\,\,{{\text{K}}_{{\text{1 }}}}$ તથા ${{\text{K}}_{\text{2}}}$ ના સૂત્ર પરથી
${K_2} = {({K_1})^{1/2}} = \sqrt {{K_1}} \,;\,\,\,\,\therefore \,{K_2}\, = \,\,\sqrt {{K_1}} $