\({K_{1\,}} = \,\,\frac{{{{\left[ {HI} \right]}^2}}}{{\left[ {{H_2}} \right]\,\left[ {{I_2}} \right]}}\) \({K_2}\,\, = \,\,\frac{{{{\left[ {{H_2}} \right]}^{\frac{1}{2}}}\,\,{{\left[ {{I_2}} \right]}^{\frac{1}{2}}}}}{{\left[ {HI} \right]}}\)
આથી \({K_{2\,}} = \,\frac{1}{{\sqrt {{K_1}} }}\,\, = \,\,\frac{1}{{\sqrt {64} }}\,\, = \,\,\frac{1}{8}\,\, = \,0.125\)
$\mathrm{X} \rightleftharpoons \mathrm{Y} ; \mathrm{K}_1=1.0$
$\mathrm{Y} \rightleftharpoons \mathrm{Z} ; \mathrm{K}_2=2.0$
$\mathrm{Z} \rightleftharpoons \mathrm{W} ; \mathrm{K}_3=4.0$
$\mathrm{x} \rightleftharpoons \mathrm{w}$ પ્રક્રિયા માટે સંતુલન અયળાંક શોધો.