\(l = AC - AB\)\( = \sqrt {{L^2} + {x^2}} - L\)\( = {({L^2} + {x^2})^{1/2}} - L\) \( = L\left[ {{{\left( {1 + \frac{{{x^2}}}{{{L^2}}}} \right)}^{1/2}} - 1} \right]\)
\( = L\left[ {1 + \frac{1}{2}\frac{{{x^2}}}{{{L^2}}} - 1} \right]\)\( = \frac{{{x^2}}}{{2L}}\)
\(Y = \frac{T}{A}\frac{L}{l}\)
\(\therefore\) \(T = \frac{{YAl}}{L}\)
\(\frac{{mgL}}{{2x}} = \frac{{YA}}{L}.\frac{{{x^2}}}{{2L}}\)
\(\therefore m = \frac{{YA{x^3}}}{{g{L^3}}}\)