${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
  • A$( - \infty ,\, - 1) \cup (4, + \infty )$
  • B$(4, + \infty )$
  • C$( - 1,\,4)$
  • D
    એકપણ નહી.
Difficult
Download our app for free and get startedPlay store
b
(b) \({2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5\)\( \Rightarrow \)\({(\sqrt 2 )^{2{{\log }_2}(x - 1)}} > x + 5\)

\( \Rightarrow \) \({(x - 1)^2} > x + 5\)\( \Rightarrow \)\({x^2} - 3x - 4 > 0\)

\( \Rightarrow \) \((x - 4)\,(x + 1) > 0\)\( \Rightarrow \)\(x > 4\) or \(x < - 1\)

But for \({\log _{\sqrt 2 }}(x - 1)\) to be defined, \(x - 1 > 0\) i.e., \(x > 1\)

\(\therefore x > 4 \Rightarrow x \in (4,\,\infty )\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    ${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
    View Solution
  • 2
    જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
    View Solution
  • 3
    જો ${\log _{10}}x + {\log _{10}}\,y = 2$ હોય તો $(x + y)$ ની ન્યૂનતમ શકય કિમત મેળવો 
    View Solution
  • 4
    સમીકરણ ${4^{({x^2} + 2)}} - {9.2^{({x^2} + 2)}} + 8 = 0$ નો ઉકેલ મેળવો.
    View Solution
  • 5
    સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
    View Solution
  • 6
    જો ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ તો $xyz=$
    View Solution
  • 7
    ${{{x^2}} \over {{{(x - 1)}^3}(x - 2)}} = . $. .
    View Solution
  • 8
    ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
    View Solution
  • 9
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 10
    જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $
    View Solution