${{{x^2}} \over {{{(x - 1)}^3}(x - 2)}} = . $. .
  • A${{ - 1} \over {{{(x - 1)}^3}}} + {3 \over {{{(x - 1)}^2}}} - {4 \over {(x - 1)}} + {4 \over {(x - 2)}}$
  • B${{ - 1} \over {{{(x - 1)}^3}}} - {3 \over {{{(x - 1)}^2}}} + {4 \over {(x - 1)}} + {4 \over {(x - 2)}}$
  • C${{ - 1} \over {{{(x - 1)}^3}}} + {{ - 3} \over {{{(x - 1)}^2}}} + {{ - \,4} \over {(x - 1)}} + {4 \over {(x - 2)}}$
  • D
    એકપણ નહીં
IIT 1992, Easy
Download our app for free and get startedPlay store
c
(c) Put the repeated factor

\((x - 1) = y \Rightarrow x = y + 1\)

\(\therefore {{{x^2}} \over {{{(x - 1)}^3}(x - 2)}} = {{{{(1 + y)}^2}} \over {{y^3}(y - 1)}} = {{1 + 2y + {y^2}} \over {{y^3}( - 1 + y)}}\)

Dividing the numerator,

\((1 + 2y + {y^2})\) by \(( - 1 + y)\) till \({y^3}\) appears as factor,

we get \({{1 + 2y + {y^2}} \over { - 1 + y}} = ( - 1 - 3y - 4{y^2}) + {{4{y^3}} \over { - 1 + y}}\)

Given expression = \({{ - 1} \over {{y^3}}} - {3 \over {{y^2}}} - {4 \over y} + {4 \over { - 1 + y}}\)

= \({{ - 1} \over {{{(x - 1)}^3}}} + {{ - 3} \over {{{(x - 1)}^2}}} + {{ - 4} \over {(x - 1)}} + {4 \over {(x - 2)}}\).

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ તો $x = .. . .$
    View Solution
  • 2
    $\sum {{1 \over {1 + {x^{a - b}} + {x^{a - c}}}} = } $
    View Solution
  • 3
    જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો 
    View Solution
  • 4
    $\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
    View Solution
  • 5
    ${\log _2}(x + 5) = 6 - x$ ના ઉકેલની સંખ્યા મેળવો.
    View Solution
  • 6
    ${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
    View Solution
  • 7
    જો $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
    View Solution
  • 8
    ${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
    View Solution
  • 9
    $\sqrt {(\log _{0.5}^24)} = . . $. .
    View Solution
  • 10
    જો બહુપદી $f(x)$ ને $x + 1,\,x - 2,\,x + 2$ વડે ભાગતા મળતી શેષ $6, 3, 15$ હોય તો $f(x)$ ને $(x + 1)\,(x + 2)\,(x - 2)$ વડે ભાગતા મળતી શેષ . . . થાય .
    View Solution