$Zn\left( s \right) + C{u^{2 + }}\left( {aq} \right) \rightleftharpoons Z{n^{2 + }}\left( {aq} \right) + Cu\left( s \right)$
$300\,K$ એ પ્રમાણિત પ્રક્રિયા એન્થાલ્પી $\left( {{\Delta _r}{H^ - }} \right),\, kJ \,mol^{-1}$ માં કેટલા .............. $\mathrm{kJ}$ થશે?
$[R=8\,J\,K^{-1}\,mol^{-1}$ અને $F=96,000\,C\,mol^{-1}]$
$\Delta S=nF\left( \frac{dE}{dT} \right)=2\times 96500\,\,\times (-5\times {{10}^{-4}}J{{/}^{o}}C)=-96.5\,kJ$
at $298\,K$
$T\Delta S=298\times \,(-96.5\,\,J)\,=\,-\,28.8\,kJ$
at constant $T\,(=\,248\,K)$ and pressure
$\Delta G\, = \,\,\Delta H\, - \,\,T\Delta S{\mkern 1mu} $
$\Delta H\, = \,\,\Delta G\, + \,\,T\Delta S{\mkern 1mu} $
$=-386-28.8=-412.8\,kJ$
$CH _{4}+2 O _{2} \rightarrow CO _{2}+2 H _{2} O (\Delta H =-891 kJ / mol)$
$(A)$ $2 CO ( g )+ O _2( g ) \rightarrow 2 CO _2( g ) \quad \Delta H _1^\theta=- x\,kJ\,mol { }^{-1}$
$(B)$ $C$ (graphite) $+ O _2$ (g) $\rightarrow CO _2$ (g) $\Delta H _2^\theta=- y\,kJ\,mol -1$
$C$(ગ્રેફાઈટ) $+$ $\frac{1}{2} O _2( g ) \rightarrow CO ( g )$ પ્રક્રિયા માટે $\Delta H ^\theta$ શોધો.
તો પ્રક્રિયા $C(s) + 2{H_2}(g)\, \to \,C{H_4}(g)$ માટે $(\Delta {H^o})$નું મૂલ્ય ........$kcal$ થશે.