Let length be \(l\) .
\(f=\sqrt{\frac{T}{\mu}} \times \frac{1}{2 l} \quad \dots (i)\)
\(f=\sqrt{\frac{T}{\mu}} \times \frac{4}{2 l} \quad \dots (ii)\)
or \(f=\sqrt{\frac{T}{\mu}} \times \frac{4}{6 l} \quad \dots (iii)\).
Equating \((i)\) \((ii)\) and \((i)\) and \((iii)\)
\(\sqrt{\frac{T}{T_1}}=4\) and \(\sqrt{\frac{T}{T_2}}=\frac{4}{3}\)
Put \(T=32 \,N\)
\(\frac{32}{16}=T_1 \frac{9}{16} \times 32=T_2\)
\(T_1=2 N T_2=18 \,N\)
of the options on \(T_1\) is right.