$(R= 8.314\,\,JK^{-1}\,\,mol^{-1};\,\,ln\,2 = 0.693;\,\,ln\,3 = 1.098)$
Initially, Let $[{A_2}] = 1\,M$ and $[A] = 0\,M$
After $20\%$ dissociation , $80\%$ of $A_2$ remains.
$[{A_2}] = 1 \times \frac{{80}}{{100}} = 0.8\,M$
$20\%$ of $1\,M$ is
$1 \times \frac{{20}}{{100}} = 0.2.\,[A] = 2 \times 0.2 = 0.4\,M$
The equilibrium constant
$K = \frac{{{{[A]}^2}}}{{[{A_2}]}};$ $K = \frac{{{{[0.4]}^2}}}{{[0.8]}} = 0.2$
$\Delta {G^o} = - RT\,\ln \,K = - 8.314\,J{K^{ - 1}}\,mo{l^{ - 1}}$
$ \times 320\,K \times \ln \,0.2 = 4281\,J/mol$
$Co{O_{2\left( g \right)}} + C{O_{\left( g \right)}} \rightleftharpoons Co{O_{\left( s \right)}} + C{O_{2\left( g \right)}}\,\,;\,K = 490$
તો નીચેની પ્રક્રિયા માટે સંતુલન અચળાંક .... થશે.
$C{O_{2\left( g \right)}} + {H_{2\left( g \right)}} \rightleftharpoons C{O_{\left( g \right)}} + {H_2}{O_{\left( g \right)}}$