$32\root 5 \of 4 $ to the base $2\sqrt 2 = . . . .$
  • A$3.6$
  • B$5$
  • C$5.6$
  • D
    એકપણ નહી.
Easy
Download our app for free and get startedPlay store
a
(a) Let \(x\) be the required logarithm , then by definition

\({(2\sqrt 2 )^x} = 32\root 5 \of 4 \) 

==> \({({2.2^{1/2}})^x} = {2^5}{.2^{2/5}}\);  \({2^{{{3x} \over 2}}} = {2^{5 + {2 \over 5}}}\)

Here, by equating the indices, \({3 \over 2}x = {{27} \over 5}\)

\(\therefore x = \frac{{18}}{5} = 3.6\)
.

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    જો ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$ તો $\sum {(1/x) = } $
    View Solution
  • 2
    ${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
    View Solution
  • 3
    જો ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ તો $x$ એ .. . .. .
    View Solution
  • 4
    ${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
    View Solution
  • 5
    ${{{x^2} + 1} \over {({x^2} + 4)(x - 2)}}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.
    View Solution
  • 6
    જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
    View Solution
  • 7
    $\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
    View Solution
  • 8
    જો $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$ તો $xyz = . . . .$
    View Solution
  • 9
    સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો. 
    View Solution
  • 10
    ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
    View Solution