For Ar, degree of freedom, \(f=3\)
Gas | \(C_V\) | \(C_p\) | Moles |
\(N _{2}\) | \(\frac{5}{2} R\) | \(\frac{7}{2} R\) | \(1 / 4\) |
Ar | \(\frac{3}{2} R\) | \(\frac{5}{2} R\) | \(1 / 4\) |
The specific heat of the mixture at constant pressure is,
\(C_{\text {Pmix}}=\frac{n_{1} C_{P 1}+n_{2} C_{P 2}}{n_{1}+n_{2}}\)
\(=\frac{\frac{1}{4} \times \frac{7}{2} R+\frac{1}{2} \times \frac{5}{8} R}{\frac{1}{4}+\frac{1}{2}}\)
\(=\frac{17 R}{6}\)
The specific heat of the mixture at constant volume is,
\(C_{V_{\operatorname{mix}}}=\frac{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}{n_{1}+n_{2}}\)
\(=\frac{\frac{1}{4} \times \frac{5}{2} R+\frac{1}{2} \times \frac{3}{8} R}{\frac{1}{4}+\frac{1}{2}}\)
\(=\frac{11 R}{6}\)
The ratio \(C_{p} / C_{V}\) of the mixture is,
\(\left(\frac{C_{P}}{C_{V}}\right)_{\operatorname{mix}}=\frac{17}{11}\)
કારણ : વાયુની ઝડપ માટે મેક્સવેલ ગ્રાફ સમમિતિ ધરાવે છે.
$[k_B\, = 1 .4\times10^{-23}\,J/K;\, m_{He}\, = 7\times10^{-27}\,kg]$