For the blocks \(A\) and \(B\) \(FBD\) as shown below
Equations of motion
\(a_A=\frac{F}{M}(\text { in }-x \text { direction })\)
\(a_B=\frac{F}{M}(\text { in }+x \text { direction })\)
Relative acceleration, of A w.r.t. B,
\(a_{A, B} =a_A-a_B=-\frac{F}{m}-\frac{F}{M}\)
\(=-F\left(\frac{M+m}{M m}\right) \text { (along }-x \text { direction) }\)
Initial relative velocity of Aw.r.t. \(B , u _{ AB }= v _0\) using equation \(v ^2= u ^2+2 a\)
\(0= v _0^2-\frac{2 F ( m + M ) S }{ Mm } \Rightarrow S =\frac{ Mmv _0^2}{2 F ( m + M )}\)
i.e., Distance moved by A relative to \(B\)
\(S _{ AB }=\frac{ Mmv _0^2}{2 F ( m + M )}\)