\(E_{1}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{x}{\sqrt{R^{2}+x^{2}}}\right]\)
\(E_{1}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{h}{\sqrt{4 a^{2}+h^{2}}}\right]\)
\( = \frac{\sigma }{{2{\varepsilon _0}}}\left[ {1 - \frac{h}{{2a}}} \right]\)
\(\left[ \begin{gathered}
{\text{ here }}x = h{\text{ }} \hfill \\
{\text{and }},R = 2a \hfill \\
\end{gathered} \right]\)
Similarly, electric field due to disc \((R=a)\)
\(E_{2}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{h}{a}\right)\)
Electric field due to given disc \(E=E_{1}-E_{2}\)
\(\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{h}{2 a}\right]-\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{h}{a}\right]-\frac{\sigma h}{4 \varepsilon_{0} a}\)
Hence, \(c=\frac{\sigma}{4 a \varepsilon_{0}}\)
[$g =9.8 \,m / s ^{2}$ આપેલા ]