${\text {Rate}=\frac{d R}{d T}}$
${=\alpha[A]^{x} \cdot[B]^{y}}$
${=k[A]^{x} \cdot[B]^{y}}$
$\mathrm{K}=$ rate constant
Rate, $r_{1}=k[A]^{2}[B]^{3}$
On doubling the concentration, we have
$r_{2}=k[2 A]^{2}[2 B]^{3}$
$=32 k[A]^{2}[B]^{3}=32 r_{1}$
$log$નો ગુણધર્મ $\ln \left(\frac{{x}}{{y}}\right)=\ln {x}-\ln {y}$